Convexity preserving interpolatory subdivision with conic precision

Gudrun Albrecht
LAMAV-CGAO
Université de Valenciennes

Lucia Romani
Dipart. di Matematica
Università di Milano-Bicocca
« Quadratic objects » in CAD

ProEngineer

thinkID

Giering/Seybold: Konstruktive Ingenieurgeometrie

Catia
Convexity preserving interpolatory subdivision with conic precision
Conic reproduction
Related work

- **Convexity preserving subdivision:**
 - N. Dyn, Three families of nonlinear subdivision schemes, in Topics in Multivariate Approximation and Interpolation, 2005
 - F. Kuijt, R. Van Damme, Shape preserving interpolatory subdivision schemes for nonuniform data, J. Approx. Theory, 2002
 - M. Marinov, N. Dyn, D. Levin, *Geometrically controlled 4-point interpolatory schemes*, in Advances in Multiresolution for Geometric Modelling, Springer-Verlag, 2005

- **Conic reproducing subdivision:**
 - N. Aspert, T. Ebrahimi, P. Vanderghynst, Non-linear subdivision using local spherical coordinates, CAGD, 2003
 - C. Beccari, G. Casciola, L. Romani, Shape-controlled interpolatory ternary subdivision, submitted
Overview of the presentation

1. Idea for totally convex data
2. Adaptation for non-convex data
3. Proofs of the properties
 – Convexity preservation
 – Conic reproduction
 – C0 and C1 continuity
4. Examples
1. Idea: For every given point p construct a line l through p, yielding a **convex delimiting polygon** for the **new points**

\[M_{33} := Q_3 \wedge (M_{15} \wedge (A \wedge B)) \]
Generation of the convex delimiting polygon

Construction of a (tangent) line L_i in every point P_i

Closed polygon

$T_i = L_i \wedge L_{i+1}$

Open polygon
Basics from projective geometry

$$cr(U, P, X, T) = -1$$

harmonic cross ratio
Construction of a new point according to an angle criterion

\[\alpha_{ji}^i = \min_j \alpha_j^i \]
Construction of a new point U_i

$$cr(U_i, P_j, X_i, T_i) = -1$$
Adaptation for non-convex data

Segmentation

Colinear points

Inflection points

Convex junction points
Adaptation for non-convex data

Inflection points

\[\gamma_{2k_i}^k = \max\{\gamma_{l,2k_i}^k, \gamma_{r,2k_i}^k\} \Rightarrow g_{2k_i}^k \]

\[l_i^0 = \lambda_{i}^0 l_{i,i}^0 + \mu_{i}^0 l_{r,i}^0 \]

Initial tangent

k-th iteration tangent
Adaptation for non-convex data

Convex junction points

k-th iteration tangent

\[l^k_{2k_i} = \lambda^k_{2k_i} l^k_{l,2k_i} + \mu^k_{2k_i} l^k_{r,2k_i} \]

\[\lambda^k_{2k_i} + \mu^k_{2k_i} = 1, \quad \lambda^k_{2k_i}, \mu^k_{2k_i} > 0 \]
Properties of the subdivision scheme

• convexity preservation
• conic reproduction

• continuity:
 - C0 continuity
 - C1 continuity
Properties of the subdivision scheme

- \(C^0 \) continuity

If \(p^0 \) convex \(\Rightarrow \) \(p^k \) convex and bounded by \(q^{k_0} \)

\(p^k \subset p^{k+1} \), \(\{ p^k \} \) monotone and bounded
Properties of the subdivision scheme

- C0 continuity

If p^0 convex \Rightarrow p^k convex and bounded by q^{k_0}

$p^k \subset p^{k+1}$, $\{p^k\}$ monotone and bounded

\Rightarrow (Dyn, Levin, Liu CAD 1992)\Rightarrow

$$\lim_{k \to \infty} p^k$$ exists and is a C^0 convex curve

If p^0 non-convex \Rightarrow (by construction)\Rightarrow

$$\lim_{k \to \infty} p^k$$ exists and is a C^0 curve
Properties of the subdivision scheme

- C1 continuity

\[n_i^k = (\cos(\theta_i^k), \sin(\theta_i^k)) \perp (p_{i+1}^k - p_i^k) \]

\[\theta^k : \mathbb{R} \to \mathbb{R} : \theta^k(\tilde{t}_i^k) = \theta_i^k \]
Properties of the subdivision scheme

- C1 continuity

\[\mathbf{n}_i^k = (\cos(\theta_i^k), \sin(\theta_i^k)) \perp (\mathbf{p}_{i+1}^k - \mathbf{p}_i^k) \]

\[\theta^k : \mathbb{R} \rightarrow \mathbb{R}, \quad \theta^k(\tilde{t}_i^k) = \theta_i^k \]

=> numerically:

\[\lim_{k \rightarrow \infty} \theta^k = \theta \quad \text{continuous} \]
Properties of the subdivision scheme

- **C1 continuity**

\[\tilde{p}_i^{k,[1]} = \frac{p_{i+1}^k - p_i^k}{\tilde{t}_{i+1}^k - \tilde{t}_i^k} = (- \sin(\theta_i^k), \cos(\theta_i^k)) \]

\[\Delta_{k,[1]} = \sup_{i \in \mathbb{Z}} \| \tilde{p}_{i+1}^{k,[1]} - \tilde{p}_i^{k,[1]} \|_2 \]
Examples: uniformly spaced data
Examples: non-uniformly spaced data
Examples: conics
Examples: curvature combs

Dyn, Floater, Hormann, CAGD 2009
Sabin, Dodgson, Proc. Tromso 2005
Examples: curvature combs

Albrecht, Romani

Dyn, Floater, Hormann, CAGD 2009

Sabin, Dodgson, Proc. Tromso 2005
Examples: general, non-convex data

Data: courtesy of think3
Theoretical results:
- Convexity preservation
- Conic reproduction
- C1 limit curve